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Kinetics of dichotomous noise-induced transitions in a multistable multivariate system
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We study the stochastic evolution of a multivariate and deterministically multistable system subjected to an
additive Markovian dichotomous noise. To this end, a steady-state probability density support is defined in
such a way that no stochastic trajectory can escape. An appropriate boundary condition is then imposed in
order to numerically evaluate this distribution. When the noise amplitude is large enough, the system may
evolve from one deterministic attractor to another. A partition of the support in disjoint species is proposed. It
is then possible to study the kinetics of the noise-induced transitions between species. Projection operator
techniques are used to obtain a phenomenological kinetic law valid when the interspecies transition time scale
is much longer than all the other time scales characterizing the system. We also develop a fast algorithm
permitting the numerical evaluation of the phenomenological transition rate. As an example, we consider a
bivariate system exhibiting two deterministic stable fixed points and a saddle point. The results confirm the
existence of a phenomenological law insofar as the noise amplitude is large enough and its correlation time,
small enough[S1063-651X97)07004-9

PACS numbdis): 02.50.Ey, 02.70-c, 05.40+j

I. INTRODUCTION between them, a rate process between the different species
can be defined9]. Such transitions must not be confused
In nature, nonlinear dissipative systems often exhibit dewith the noise-induced phase transitions described by
terministic multistability [1-7], whereby many attractors, Horsthemke and Lefevef5]. These noise-induced phase
with their associated basins of attraction, coexist for a giveriransitions occur when the stationary probability density is
set of control parameter values. Examples of such systengualitatively modified by a change of the parameters describ-
include many electric oscillators, chemical and photochemiing the system or the noise. On the other hand, a rate process
cal reactions, optical systems, and predator-prey relationis defined for a given realization. It consists in the transition
ships. from one species to another, the parameters just mentioned
All these systems are generally subjected to noise, rapiteing held constant.
environmental fluctuations, which are usually perceived as The projection operator technique is often used in out-of-
purely random. Their action is often believed to be strictlyequilibrium statistical mechani¢4.0], for example, to study
disorganizing. It is true that the stable states of a system arehemical reaction§1l]. In recent years, it has been estab-
blurred by the noise. However, when the noise is applied tdished that projection operator techniques are very useful for
a nonlinear system, it can create stable states with no detestudying the evolution of the probability density in a univari-
ministic counterpar{5,8]. As such, the noise may have a ate bistable system subjected to ndi9e12—19 and for in-
structuring effect. The influence of noise on nonlinear dissivestigating the transition kinetics between species in such
pative systems must therefore be further investigated. systems, in particular for Markovian dichotomous noise.
White noise is often used for such investigations becaus&hus, this method permitted the determination of the regime
of its relative ease of use. But in the case where the correlan which a phenomenological rate law properly describes the
tion time of the noise cannot be neglected compared to theansitions between species and of an approximate analytical
system time scales, colored noise must be considered. Thexpression for the corresponding transition rg®8. The
two most common types of colored noise are the Ornsteinmemory effects that appear when a phenomenological rate
Uhlenbeck noise and the Markovian dichotomous noise. Théaw is not valid have also been investigated using projection
latter, having a discrete phase space, often leads to easieperator technique®,16]. These techniques have also been
computational and experimental implementations. It is thereused to study the critical slowing down of the interspecies
fore a valuable tool when the influence of the noise correlatransitions that occurs when the amplitude of the noise is
tion time is not negligible. close to the minimum value allowing those transitions to take
Generally, a deterministic dissipative system possessqdace [9,17]. Furthermore, projection operator techniques
one or more attractors. To each of them corresponds a basirave played a key role in the development of a numerical
of attraction. If the system is initially located in one of them, algorithm used to verify the validity of a phenomenological
it evolves inevitably toward the corresponding attractor.rate law and to calculate the transition rates in a univariate
When such a system is subjected to noise, a given trajectoflyistable systenfi17,18. This algorithm is qualified as “di-
in phase space may jump from one basin to another. Thegect” since it only considers the realizations starting at a
basins are not well defined anymore. As presented in Sec. Ihboundary between species. On the other hand, in a simple
new regions of phase space called species can be definedphenomenological simulation, the realizations are initiated
analogy to chemical reactions. If the system realizations@ccording to a given distribution and their evolution is moni-
spend more time inside each of the species than to travébred as a function of time. Since these transitions are very
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uncommon in a regime where a phenomenological law isye define the probability densif§(x,t,) projected onto the

valid, a _dlrect simulation is gxpeqted to be more efficient dynamical variables and the differenﬁla(i,t) between the
than a simple phenomenological simulation. - -
gensmespi(x,t) as

However, few studies have investigated the interspecie
noise-induced transitions in dissipative systems described by
more than one variabld 9]. In this paper, we propose such a
generalization of the direct simulation algorithm to multi- - - -
variate multistable systems. In order to do so, we numeri- Q(X,t)=p,(X,t) =p-(X1), 2.3
ca[ly determl'ne t_he support over which the steady-state pmbés well as the vector fields
ability density is nonzero as well as the steady-state
probability density. We also need to establish an appropriate i
definition for the species. '

In Sec. Il, we derive the general analytical expressions S 2~ o
underlying the method. The next two sections present the KX H=FX)QM D +AP(GY. 24
numerical results for a simple example of a bivariate bistablg-qyation(2.2) then becomes
system. Section Il discusses the steady-state probability
densities while Sec. IV presents the transition rates in the P . s s s
regime where a phenomenological law is valid. Finally, con- at (x,1)=-V-J(x,1),
cluding remarks are found in Sec. V. Two Appendixes com-
plete the presentation.

P()_()!t)E p+()zit) + pf()zrt)i

=(X)P(X,t) + AQ(X,1),

% (X,t)==V-K(x,1) = yQ(X,t). (2.5

[l. FORMALISM

It is clear thatj(i,t) represents the current density associ-
ated with the probability densit(x,t). Using Egs.(2.1)
and(2.3), Eqg. (2.4 can be rewritten as

A. Steady-state probability densities
We consider a system described byranomponents vec-
tor X whose evolution equation is

F=E@+1(1), 2.1 I(X, 1) =X1 (X) P+ (X, +X_(X)p-(X,1),

whereF (x) is a pseudoforce anidt) is an additive symmet- KX D =X ()P (X,1) =X-(X)p-_(X.1).
ric Markovian dichotomous noise sampled according to

Poisson distribution. It is characterized [8,20—22 Tt now appears thad(x,t) can also be interpreted as the

average velocity. On the other harh%ti,t) characterizes the
0 E{_& +5} average spread of velocities in a set of realizations. As time
' ' goes to infinity, these densities and vector fields approach the

steady-state distributionss.(x), PS(x), Q%(x), J%(x), and

<|(t)>:0, K’S()-()
. - We consider a vector fielﬁ(i) with two or more deter-
(1) 1(t+7))=[A[* exp(—v|7]), ministic attractors. To each of these corresponds a determin-

. istic basin of attraction. In general, the position of the attrac-
where y= 2/, 7o being the noise correlation timé, is  tors and the basins extent vary randomly in time under
the noise amplitude, and--) denotes an average over real- stochastic dynamics. If the noise amplitude is large enough, a
izations. realization can therefore travel from one basin to another,

Let p.(x,t)d"x be the probability that the system be in thus allowing a rate process to be defined.
statex at timet with the noise being= A. It can be shown The steady-state probability density supp@M is a sub-

. . . - region of the phase space defined as the set of states reach-
[5] that the evolution of the probability densitips.(x,t) is able, directly or not, from any of the attractors. This defini-

given by tion is reasonable since every realization will eventually
o reach one of the attractors and subsequently all those reach-
= ()Z,t):Dp(i,t), (2.2) able from it. The support boundar@?ﬂ) Jsacorrlposed of
segments belonging to lines definedby F(x) +A. There-
where fore, everywhere on the boundary
i Nyo-[F(X)+A]=0 andlor N,q-[F(X)—A]=0,
- X,t 2.6
D(%.t)= |0+(€ ) ’ (2.6)
p-(x,t)

whereN,( is a unit vector perpendicular to the boundary and

e .. pointing outside the support.

p=| ~V [FX)+A]=yi2 o 3’/2 ) } Since the system cannot be outside the support once the
vI2 =V [F(x)—A]—9/2| steady state is reachel$(X) is zero outside it and
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,le,js()z)zo 2.7) wher_ei ==+, Since little probat_>i|ity current flows between
species once the steady state is reached, we expect the aver-
on its boundary. Equation®.6) and(2.7) also imply that age population number to vary slowly compared to the sys-
) tem’s other degrees of freedom. We therefore define a linear
Nyo- IZS(X) =0. operatorP that projects onto the average population numbers

- N in order to investigate their kinetics:
The steady-state probability densities can be calculated

using the partial differential equatiof.5) and the boundary Ppi(%,1)
condition (2.7): o

V.J%(%)=0, => [2 f%nd”x' 0,(X")p; (X' ,t) |72 0,(R)P(X),
V- K3(%)+ yQ%(X) =0, (2.10
[Qjm.jS()z):o_ wherep;(X,t) is a function defined on the system stétand

) _ _ the noise A. We similarly define the complementary projec-
These equations cannot, in general, be solved analytically. fyr 9=7—P, whereZ is the identity operator.
numerical method such as the finite elements technique is |nserting P+ Q=7 in the evolution equation2.2) and

therefore required. projecting with? and Q, we get the coupled equations:
B. Kinetics and transition rates aPp(X,t)=PD(P+ Q)p(X,t) (211
OnceP3(X) andQS(X) are known, the suppoff)) can be
split into m speciesa, to which correspondn disjoint re- 2,0p(%,t)= OD(P+ Q)p(X,t). (2.12
gions(,, such thaﬁs(i) has no component perpendicular
to the boundaries(},, of these regions: Integrating Eq.(2.12, and inserting the result in E¢2.11),
- . we get
Nma-‘]s(x)=0, (2.8

~ J
where Noa, is a unit vector perpendicular to the boundaryﬁ Pp(X,t)=PDPp(X,t)+ PDe®' Qp(X,0)

dQ, and pointing outside of the regiofd,. The points

where a vector perpendicular to the boundary cannot be de- t oDo R

fined are the only ones where a probability current density T fod‘f PDe="?QDPp(X,t—a). (2.13
can exist between the regiofs, in the steady state. The
species are therefore almost completely isolated from one . . .
another. This definition for the species is self-consistently Let 7595 be the time scale associated to the population

determined, i.e., it springs naturally from the system characdY"@mics andry the next largest time scale in the system.

teristics instead of being arbitrarily imposed. Furthermore, jpve assume a good separation of time SCaigge 7mic) . In

leads to a simple rate law similar to the one found in thethaF case, the initial condition term in E(.13 decreases
apidly. It can therefore be neglected for ;.. Alterna-

univariate case. Finally, as will be seen from the numerical’ , . Lo e
results, it leads to am posterioriseparation of time scales. tively, it can be shown tha@p(X,0)=0 if p(X,0) is propor-

A characteristic function is defined for each species:  tional to p(X) separately in each region. Since wheg, -
> Tmic,» P(X,t) approaches rapidly such a distribution, it is
1 if XeQ,, X¢dQ, reasonable to neglect such a term.
1 if XedQ,e SubstitutingP’s defini.tion, integrgting over an.arbitrary
0,(X)=9 1 i %ea0 (2.9  region()z (associated with the speci@s and summing over
2 | Xef? ai the noise, we get an equation describing explicitly the popu-
0 otherwise, lation kinetics:

where 9Q) ,; is the interspecies boundary i.e., the part of

ﬂQa_ separating(},, from the other species, amﬂqs, thg Nﬁ(t)zg f ndnx ﬁﬁ(i)PDijpjs(i) 0,(X) ﬂ;lN_a(t)
portion of Q0 on the support’s boundary excluding points ija Jo
belonging todQ} ,; . A species average population number at ‘
timet is given by +fodaij%a sy‘nd”x GB(X)PDij(eQD")jk
Na(t)EEi fmnd”x Pi(X,t) 0,(X) X QD PS(X) 0,(%) 7. N (t— o). (2.19
and its steady-state population by Using the fact tha& ,6,(X)=1 on all the support and also
Dp(X)=0, Eg. (2.14 can be formulated in terms of the
S S deviations from the steady-state populationN,,(t
%EZ J%ndnx PP(X) 0,(X), N0 y pop o)
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M) =3 [ d™ 0,00PDD7X)0,0)m, N, Ny(t)= 3 751oN, (D) 2.1
ja JR a
+ftd02 d"™X 6,(X)PD;: (e2°), to describe properly the population number kinetics. Here,
0 ifkla Jo" k ! Ik the coefficientsr,, may be positive or negative and their
. o absolute values represent the phenomenological rate coeffi-
X ADPi(X) 0a(X) 7, 0Ny (t—0). cients. In order for this to be the cadég,(t) must approach
] . . . hr a2 zero on a time scale on the order of;; such thatsN (t)
Since Zifond"™X O5(X) Ppi(X,) =2 nd"X" 65(X")pj  can be taken out of the time integral in E@.16). In that
(x',t), we can eliminateP from the preceding equation. It case the integrated memory function exhibits a plateau be-
becomes havior fort> 7,,.. The transition rate-,}j can be identified
: . . with that plateau value:
SN (1) = SN (1) + SN(t), (2.15
At
where Tga= fo do Mg,(0),
5N/’3(t)52 f nd”x ﬁﬁ(i)Dij[pjs(i) aa(%)]ngléNa(t), whereAt> 7. If we consider times short compared to the
o JO population dynamics time scalé\{<7,,;), the full propa-
. gator €P') can be substituted for the projected o&!).
5N"(t)5f do D, d"x 0,(%)D;:[(€2P7):, This can be seen using the identity
B 0 ijkla J®" A ! J
t
X QD PF(X) 0,(X) 17, 6N (t— o). ePt=gePt— f do ePt~pDeP? (2.18
0

Again usingDp3(X) =0, we get
g 9bp" (%) g and the estimate

SNL()=— > nglﬁNa(t)f d™x 05(X)IN(X) -V 0,(X). t t
? « " g f do eP~)PDePT~ — &P, (2.19

0 Tpop

As shown in Appendix A, the characteristic function’s gra-

dient corresponds to a Dirac delta function giving us thelndeed, in Eq.2.19, e®~? can be approximated bg"
component of a vector perpendicular to the boundary. Asind taken out of the integral fo< 7,,, Since it operates only

such, on slowly varying degrees of freedom. The integral then
gives us a factot andPD, a factorrgolp The memory func-
5Nb(t)22 ”Zl(SN“(t)LQ d"1x g(X) 05(X) tion can therefore be rewritten as
- . ’ 3 t
XN(;Qa'JS(X), M,Ba’(t)_MBa(t) 1+O( Tpop)}’

where the procedure of integration and the functigr) are  where
defined in Appendix A. Since by definitioleaJS()Z):O,

then 8Nj;(t)=0. The instantaneous flux therefore plays no Mgl (t)=—2, f d"X 5(X)Dj;(€P7)
role in the population dynamics. Memory effects are the key ki I3
factor. Similarly, it can be shown th&D,,p;j(x) 6,(x) =0. X Digpi(X) 0(X) 72~

We can therefore rewrite E@2.15 as
_ . Neglecting terms of ordekt/ 7, T[;j can be expressed as
SNg(t)=—2, f do Mg, ()N, (t—0), (2.16 N
a 0 _
Tﬁjznﬁa(m)zfo do Mpg,(a).
where the memory function is defined as
R Infull (j==):
Mg, (t)=— I% f%ndnx 0,5(X)D;;(€9P7)

1
R R Toe=""5" d" B5(x)(e”Y);:
XD P(X) 0,(X) 7, P 2 G0 e A g

As long as the transients due to the initial state can be ne- X[IS(X) +]K3(X)]- V 8,(X),
glected, Eq(2.16) is formally exact.

When there is a good separation of time scaleg,( Wwhere we have used the equatim5(§)=0. Defining the
> Tmic), We expect the phenomenological rate law operatorD', adjoint toD,
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[E(X)+A]-V—y/2 yI2 normalization conditior® ,6N(t)=0 implies that onlym?
/2 [ﬁ(i)—&]ﬁ— ol —m transition rates are independent and tais singular.
Y Y The eigenvalues and eigenvectorskofjive us some insight

this equation can be rewritten in the Heisenberg picture into the population kinetics. The null eigenvalue corresponds
to the steady state. The next smallest one, namgg cor-

D=

4 77;1 . ofat - responds to the largest time scale of the system. A phenom-
Tpa= "5 Z %nd x[(e7 )i 0p(x)] enological simulation can be used to calculate it if it is much
) smaller than all other nonzero transition rates. For systems
X[I(X) +KS(X)]- V 8,(X). with two species defined) andB, we have
. > > . . -1_ -1 -1

Since V4,(x) corresponds to a Dirac delta function and Tpop— Tant|7asl,
sinceN, - J%(X) =0, =755+ |784 (2.21

7771 t

Toa=" ; > o d" % g(x)j[(e 2 5(x)] Ill. STEADY-STATE DISTRIBUTION AND SPECIES
ij 0,
A. Model

g2
X Nag,,-K3x), In this study, we concentrate on bivariate systems. In the
i ) . i ) absence of noise, the system considered here exhibits two
where the integration procedure ag¢k) are defined in Ap-  staple fixed points and a saddle point. When subjected to
pendix A. As shown in Appendix B,2;(eP 1ii6s(x)] rep-  dichotomous noise, its evolution is given by

resents the average over realizations at tinoé the charac- .

teristic function given that at=0, the system was in state x=—ax*+bx=A,,

x and the noise wagA. We definedj;(t|x,jA) as the value
aﬁ(i(t)) at timet for a given realization initiated at time
=0 with the system in state and noise equal tpA. Thus:

y=—Ccy*xA,.

The amplitude of the noise is chosen in such a way that only

.. . . one attractor subsists for each of its valuesA). This bi-
<0;3(t|x,jA)>=E (eP Y1 05(X) variate system is described by two deterministically decou-
! pled subsystems, the one inhaving been already studied
VL9,17,18. The only coupling between the two subsystems are
due to the synchronized transitions of the noise. Once nu-
merically evaluated, the probability densities for the bivari-
nt ) o ate systems can therefore be projecteckandy and com-
TE;'Z% f d"Ix g(x)[(O(At]x,—A)) pared with the known solutions of the univariate systems.
Qg Using reduced units

where the average over the realizations is explicit. We no
obtain the central result of this paper:

o Z L RAWIR KS(w
<0B(At|x,+A)>]Nma KS(x), (2.20 x=x* \JcTa,
where 7 < At< 7, _VEAL
For univariate systems, this equation reduces to an equa- y=y ay/c,

tion derived by L'Heureux and Kaprall7] given that we
consider, like they did, only two species and use the local t=t*/c,

minimum of Ps(i) as the boundary between them. The cri-
terion N,q-J%(X)=0 cannot be used for that case since
J5(x) is identically zero. o K% = — (X*)3+b*x* £ A*
In Eg. (2.20, the component oKS(x) perpendicular to
Q) , represents the speed at which a set of realizations splits

these equations can be rewritten as

; . yr=—y*+1, (3.2
apart perpendicularly to the boundary. Also, the difference
between the averaged characteristic functions then represe%?Iere
the evolution of the realizations after they have left the
boundary, indicating the fraction of realizations that end up b* —b/c
in region () ; because they are going in the right direction
from the start. As in the univariate case, the presence or the
absence of a plateau &, (At) (Tic<At<7p,) consti- Af=Aalc?,
tutes a validity criterion for the phenomenological rate law
(2.17. v* =vlc.

This law can be rewritten a§N(t)= —K&6N(t), where
the vectorédN(t) groups together then population numbers  Subsequently, we drop the asterisk while implicitly using the
and the matrixK, the m? transition coefficientSr;j. The  reduced units.
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B. Algorithms algorithm[23]. This method was chosen over the finite dif-

ference algorithm because of the relative ease with which it

considers boundaries of arbitrary shape. The finite elements
The first step leading to the evaluation of the interspeciegigorithm has been implemented using the Modulef library

transition rate consists in determining the support of thejeveloped by the Institut National de Recherche en Informa-

steady-state probability density. As mentioned in Sec. Il, it istique et en AutomatiquéFrance.

defined as the set of all the states reachable from the attrac- We consider the following two partial differential equa-

1. Determination of the support

tors. tions and the corresponding boundary condition:
The support boundary is numerically evaluated as a se-
guence of segments, each of them being part of a trajectory V. J%(x)=0, (3.2

leading toward an attractor. The computation of this se-
guence is a two-step process. The first one supplies an ap-

O KS(w S(v)—
proximation to the boundary and the second iteratively im- VKX +yQ(x) =0, 33
proves it. T
The chosen initial approximation consists of a closed Nyo-J*(X)=0, (3.4

curve containing no area. It is determined by a deterministic -

trajectory joining the two attractors. We use a starting pointwhereN,q is a unit vector normal to the boundary and point-
located at the surviving attractor whéft) = +A. The equa- :”mg Ici’é‘és'de the support. As was seen in Sec. II, Ba also
tion X= If(i)—ﬁ is then numerically integrated using an ad- P

aptative Runge-Kutta algorithm in order to get a sequence of ,(lm. KS(x)=0. (3.5
points on a deterministic trajectory joining the two attractors.

Using these points, a closed and degenerate loop encompass-As is well known, the finite elements method consists in
ing no area is built. This sequence of points constitutes thgsing a mesh and interpolation functions to transform the
initial approximation of the support boundary. A different partial differential equations to a system of linear equations.
but equally valid approximation is obtained if the attractor The starting point of the finite elements method consists in
surviving Whenr(t)= —A is chosen as the starting point and multiplying Egs.(3.2) and (3.3) by the arbitrary functions

if the equationx=F(x)+ A is numerically integrated. H;(x) andH(x) and in integrating them over the support:
As mentioned above, the second step consists of a loop

yvhere.the approximation is refined until sgfflg:lent precision J' d2x HJ(§)§-55(§)=0,

is attained. It is important to note that the initial approxima- Q

tion is a subset of the support as is every subsequent approxi-

mation. We therefore iteratively extend the support until con- L. L R
vergence is obtained. To do this, we consider successively f d?x He(X)[V - K3(x) + yQ%(x)]=0.
each of the points that define the segments approximating the o

support. For each point, we _venfy if there e_xusts a therrT"n'Using the divergence theorem and the boundary conditions

istic trajectory, described by=F(X)—A or Xx=F(x)+A, (3.4 and(3.5), we obtain the so-called weak formulation:
going through it and leading outside the support as described
by the current approximation. If this is the case, we numeri- .
: - : : : d?xVH;(x)-J%(x)=0
cally integrate the corresponding equation until the determin- N J '
istic trajectory reaches the current support approximation.
The latter is then updated to include the region just calcu-
!ated. In doing so, we eliminate the part of the boundary that f d2X[ VH(X) - K3(X) — yHk(X)Q%(X)]=0.
is not on the support boundary anymore. We then continue to Q
examine each point one at a time, but considering only those =~ _ -~
that define the new approximation of the support boundarylt implicitly contains the boundary conditions. They are
When no deterministic trajectory lead outside of the supporttherefore natural boundary conditions and do not need to be
we consider that it has been entire|y determined. forced when the linear System of equatlons is solved. The
Even if it may seem complicated, this procedure is verylast step in preparing the partial differential equations is to
efficient. Only a few minutes are required to determine thesubstitute the definitions af¥(x), K3(x), andQ3(x):
support for a given problem on an average workstation.

However, the algorithm performance is tied to the order in By o r2 e e -
which we use the trajectories that lead outside the support fﬂd X{VH,00-[F(0) = AT}p2 ()
approximation. It is clearly advantageous to first use those

that increase the size of the approximation by the greatest +{VH;(x)-[F(x)+AT}pS (x))=0,

amount since it minimizes the number of iterations.

2. Finite elements Jﬂdzx({_ VHy(X)-[F(x)— A1+ yH (X)}p (X)

The support being determined, the steady-state probability - . sy g
density is then numerically evaluated using a finite elements F{VH(X)-[F(X)+A]=yHy(X)}p% (x))=0.
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(1.325,1.000)

(~1.325, —1.000)

FIG. 1. Vectorial fieldF(x)+A for y=25,b=A,=1. The ar- ® (1525, 1.000)
row length is proportional to the value of the vectorial field.

These equations are then solved fidr(X). Since the system
of linear equations is homogeneous, the solution is deter-
mined only up to a constant. The normalization condition

f d"x P(X,t)=1
mn

determines that constant.

For this initial study, we chose to use the simplest pos-
sible type of finite elements, i.e., triangles with nodes at the
vertices and to which are associated linear interpolation func-
tions. The solution therefore has a continu@y between
elements. We use the Galerkin method, which expresses the
arbitrary functionsH;(X) and H¢(X) in terms of the same FIG. 2. InP%(x) for various values ofy obtained by finite ele-

interpolating functions as the steady-state probability densiments techniques in the case wheéreA,=1. (8 y=5 (two
ties. smoothing cycles the spacing between level curves is QW y
=25 (three smoothing cyclgsthe spacing between level curves is

3. Smoothing 1.0.

_The result obtained by the finite elements algorithm ex-yitaneously on every triangle, i.e., the value at each node is
hibits small amplitude oscillations superposed to the S°|Ut'0rﬂjpdated only once all the averages have been calculated.
of the partial differential equations. These are due to the " The |ast step consists in combining for each node the

discretization procedure. In principle, their _amplitudg can beaverage value from each adjacent triangle. This in done by
made as small as necessary by decreasing the size of tESnsidering the ared, of each triangle:

elements. However, limited computer resources do not allow
for an infinite reduction of the element size. The most im-

(~1.325, ~1.000)

portant region of phase space is the one between the peaks 2 Pi,j Aj
since this is where the interspecies boundary is located. The P/= ! ,
probability density being small in that region, it was impos- 2 A

—

i

sible to sufficiently decrease the amplitude of these oscilla-
tions using the chosen type of finite elements.
It was therefore decided to use a smoothing procedure iwhereP;’ is the new value associated with global nodé# is
order to reduce the amplitude of these undesirable oscillaeasily verified that the normalization is conserved.
tions. The distributions are averaged separately on each tri- It may be necessary to apply the smoothing more than

angle using the simple formula once in order to obtain clear steady-state probability densi-
ties between the peaks for the purpose of defining a clear
, , . Pi+P;+Py interspecies boundary.
I:)in = I:)jn: I:)kn:Tl

4. Interspecies boundary

where the variabld®,,, represents the initial value at global ~ Once the steady-state probability densities have been

nodem andP;,,,, the average at global nodecalculated on evaluated, the steady-state density curéd(x) can be com-

trianglen. The averages are considered to be performed sputed from Eq.(2.4) and the interspecies boundary deter-
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mined using criterior(2.8). The first step is to start from a @
point that is necessarily part of the boundary. For example,

the symmetry of the problem implies that the origin is part of

the interspecies boundary for the model presented in Sec.

[l A. From this point, we find directions tangential to the ]
current, either upstream or downstream, and integrate all the 1.0+
way to the support boundary using an adaptative Runge- ]
Kutta algorithm. Pl

C. Results

Figure 1 shows the stochastic figf{x)+A on the sup- 1
port for the model presented in Sec. Il A. The figqx) 0.0-FA

— A can be obtained by a reflection through the origin. The [ A
figure illustrates the validity of the result obtained from the ®
support determination algorithm. Since this procedure is en- 20
tirely deterministic, the support shape and size do not depend ]
on the value ofy. The presence of four vertices underlines ]
the complexity of the behavior that can arise when a simple 157
system is subjected to noise. ]
Figure 2 illustrates the steady-state probability density

Ps(i) and demonstrates the variety of behaviors that can

arise when a simple system is subjected to Markovian di- ]
chotomous noise. The symmetry propeR§(X)=P5(—X) 0.5+
exhibited by the figure supports the validity of the algo-

rithms. Fory small, the distribution in the neighborhood of :

the origin is small and is overwhelmed by the numerical O'G_w' s T T T T T T T,
noise. However near the edge of the support, its evaluation is y

reliable. It is seen thaPS(X) exhibits an absolute maximum

near the upper-right and lower-left corners of the support. FIG. 3. Projections ofP5(X) for y=25, b=A,=1. The pro-
There is also a relative maximum near the deterministigected probability densities are practically indistinguishable from
stable fixed points £1,0). PS(X) is therefore quadrimodal. the ones calculated using E@®.6). (a) Projection orx, (b) projec-

As yincreases, the maxima near the corners disappear, leatien ony.

ing a bimodal distribution. When the system is deterministi-

cally decoupled, a quantitative verification of the distribution ~ The probability current density is shown in Fig. 4. It is

is to project it onx andy by integrating overy and x, clearly seen that boundary conditi7) is verified. Finally,
respectively. We can then compare the results with th@n interspecies boundary passing through the origin can be
known distributions for decoupled univariate systefRgy.  defined according to criteriof2.8) (Fig. 5. Near the origin,

3). Indeed, it has been shoWh] that for a univariate system this boundary is close to the stable manifold of the determin-

whose evolution is described by istic saddle point.
x=F(x)+1(t), IV. KINETICS
wherel (t) is Markovian dichotomous noise, the probability A. Algorithms
density PS(x) is given by 1. Phenomenological simulation
7 In a simple phenomenological simulation, the realizations
—r—exd d(X)], Xe[Xa,Xg] are initiated according to some distribution and are moni-
PS(x)=1 D(x) Ae tored under stochastic evolution. The results can then be fit-
0, Xxé&[Xa,Xgls ted to a phenomenological rate law. However, for regimes
where such a phenomenological law is valid, the stochastic
x F(x") trajectories wander for a long time within each species and
d(x)= J; dx’ D(x')’ transitions seldom happen. Even if such a procedure can be

(3.6) extremely inefficient, it is used here to verify the direct simu-
lation results.

2. Direct simulation

A? F2(x)
eff —
D®(x)= 5 (1 A2 )
A different approach is suggested by Eg.20), in which
The constant is arbitrary whileZ is a normalization con- all trajectories start on an interspecies boundary. Since the
stant. The interva[x,,Xg] constitutes the support, where distributions are calculated using linear interpolation func-
Xa g are the roots ofF (x)==*A, respectively. tions, a simple trapezoidal algorithm is used to integrate over
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(a)

(1.325,1.000)

0.005

0.004-]

0.003-]

|Rast

0.002—

0.001

0.000

(71325, 71000 FIG. 6. Integrated memory function as a function of time ob-

®) (1.325,1.000) tained by direct simulation foy=25,b=A,=1.

3. Characteristic function

For each type of simulation, the hardest task is to evaluate
the characteristic functions, that is to determine if a given
phase point is within a given species. A very general method
that can be used to solve this problem is to count how many
times a ray originating from the position of the realization in
phase space intersects the species boundary. The realization
is inside the species, if and only if, there is an odd number of
intersections. In two dimensions, the boundary is most sim-
ply implemented as a sequence of segments. Even if the ray
is arbitrary, the computations are much easier if it is parallel
to one of the axes. We chose a ray that points toward the
positivex axis. The execution time of the algorithm scales as

FIG. 4. Probability current density field fop=25, b=A,=1.  the number of segments describing the boundary. In order to
(@ J3(x)/|3%(x)], (b) In(FX)); the spacing between the level reduce the execution time, the species area is partitioned by
curves is 1.0. equidistant lines parallel to thg axis. The computation is
then executed in two steps. First, we determine in which

the species boundary. Such an approach is expected to trip, described by a small number of segments, the realiza-
P Y: bp P i6n may be. Then, the algorithm described above is used to

much more efficient than the simple phenomenological Simuéstablish if it is there or not

lation. Furthermore, using a direct simulation leads to the ’

determination of all the transition rates that are present in a

phenomenological rate law whatever the number of species B. Results

”.‘aylb‘?- On the |0tr:fr .han.d’h% simple phen.o_menological In the caséb=A,=1 and y=25, the existence of a pla-

Zli?;r:rt':fgrgzps cc’)rf' ?/naésr::?ugdu(al.s etween transition rates Oftea_u_for the fuNCionRag(t) (7mic<t< 7o) SUPOIts the

validity of the phenomenological rate 1ai&.17) (Fig. 6). By

symmetry, Taa=|7ag| SO that 7,5,=27a5 [Eq. (2.21)].
Since the lifetime of the transients is of ordgy;., we ob-

L serve thatr,c~10 ! in this case. We also observe that

Tpop™ 10%. This further confirms the separation of time scales

and the validity of the phenomenological rate law for this

species B case. The same conclusion is obtained when the results from

a simple phenomenological simulation are fitted to 2ql7)

(Fig. 7). Transition rates obtained using both types of simu-

lation are compiled in Table I. In all cases, is humerically

evaluated as being close to 0.5, as required by the symmetry

species A of Eq. (2.1) when considering mod&B.1).

We notice that the transition rates obtained using the two
methods are of the same order of magnitude even though
g - s they differ by a factor of approximately 2. In particular, for

. the case wherb=A,=1 (Fig. 8), direct simulations give

—1_
FIG. 5. Set of species defined for=25,b=A,=1. Tpop— 0-789 exp—0.273y)
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—0.94

—1.04
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t Y

FIG. 7. Decay of theA-population humber obtained by simple FIG. 8. Phenomenological transition rates for the bivariate sys-
phenomenological simulation foy=25, b=A,=1. tem (b=A,=1). The continuous line corresponds to the direct
simulation calculation, whereas the dotted one describes the phe-
nomenological simulation. The statistical uncertainty is smaller or

Tgolp: 0.394 exp—0.277y). equal to the extent of the points.

and simple phenomenological simulations,

This result is encouraging considering the choice of finitel€cted to Markovian dichotomous noise. In the case of a
elements, i.e.C° linear interpolation functions fopS(x).  bistable bivariate system, the existence of a regime in which

Since the vector field3%(x) andKS(x) can be considered as the phenomenological rate la@.17 is valid has been dem-

derivatives of these distributions, this approximation isonstrated using both direct simulations and simple phenom-

somewhat crude. Using higher-order interpolation functionsenomgICaI simulations. In doing so, we established a species

providing C! continuity between elements would improve definition criterion.

both the positioning of the interspecies boundary and the D|_rect S|ml_JI_at|ons are an effective way to evaluate inter-
Species transition rates. However, they are very dependent on

value of V-K*(X) in Eq. (2.20. The results of the direct ho positioning of the interspecies boundaries and on the
simulation could therefore be improved quite a bit by such g51ye of the probability densities. Great care must therefore
modification. On the other hand, the results of the simplgyg taken in calculating them. In this respect, more work
phenomenological simulations would probe}bly be abogt the,eeds to be done to verify the validity of EQ.20), particu-
same as long as the boundary stays well within the region qfyyy in using higher-order finite elements. These elements
low probability density separating the two peaks. _ could also render useless the use of a smoothing procedure.
The results of the simple phenomenological simulations e speed of a simple phenomenological simulation is

are very close to those obtained for the univariate system jimited by the time required for a transition to occur. On the

;_Xd+b¥i4x [1gvltﬁ- For tq‘; SyStgmt;'l'tthe' n:;erspe_mes other hand, a direct simulation execution speed is limited by
oundary is given by thg axis. The probability in the region A lE RV A (Al 4 K -

enclosed between this boundary and the bivariate intersp(%gqe s(;bzt(r; thsd ?ﬁigsAtj'i);r,ereAn)ge ijiﬁc(riggé;r At)h>efonuunrgblgr of

cies one is small since the latter is located between the proh-

ability density peaks. Therefore, the two sets of species dggmples generated needs to increase in order to obtain suffi-

not differ enough to be easily distinguishable using a simpIeC'reen; '\J/reeiCISIS\?vélrEf\lftno;\;Ig]eg;zs“emc;:‘a}[trl\%ri‘r, cdgllreacl;ilsitlmgfla;ilr?]rlj-
phenomenological simulation. It demonstrates that the effeq? yP - o P Y
of they variable is small in the present case aneously dete_rmlm_ng transition rates that are of the same
' order of magnitude in multispecies systems.
V. CONCLUSION Even if the bivariate system studied her_e is de'germ|n|st|—
cally decoupled, the shape of the support is not trivial. Fur-
The present study has investigated the usefulness of direttermore, the steady-state probability density shows a great

simulations to study multistable multivariate systems subdeal of diversity as the parameters are varied. This clearly

TABLE |. Transition rates for the bivariate systei®.1) (b=A,=1). The uncertainties are determined
using a linear regression to adjust the simulation results to @qk7) and (2.20 and thus only represent
statistical errors.

-1

v A Tpop
Direct Phenomenological
simulation simulation
20 0.4997 (3.47 +0.02)x 103 (1.55+0.06)x 103
25 0.5001 (8.44 +0.02)x 104 (3.9 x0.1)x 10 *
30 0.5004 (2.097+0.004)x 10" * (9.7 £0.2)x10°®

35 0.5024 (5.84 +0.02)x 103 (2.44+0.07)x10°°




5070 STEVE GUILLOUZIC AND IVAN L'HEUREUX 55

illustrates the rich behavior that can arise from an apparently 0’ (x)=H(f(x))
simple system when it is subjected to noise. “

This tool should prove very useful in studying stochasticyhereH (x) is the Heaviside step function:
systems. One such bivariate system is the quartic potential
coupled to the Morse oscillat¢R4]. This system is used in 0 if x<O0
model isomerization reactions coupled to an internal rota- Hoo=4{ 1 if x=0
tional degree of freedom. In this case, the noise could repre- )=\ z I, B
sent the stochastic variations of an external electric field ap- 1 if x>0
plied to the isomers. Furthermore, univariate inertial systems . ) .
could be studied using the same approach by introducing &"df(x) is a continuous function such that
second variable representing velocity.

Some of the algorithms implemented here could be used | =0 if xeQ,, Xe&d,
to study systems described by more than two variables, while f(x){ =0 if xe 0,
others would need to be redesigned. For instance, the finite <0 otherwise.

elements and smoothing procedures could be generalized

relatively straightforwardly to systems described by moregquation(Al) can therefore be expressed as

variables. On the other hand, the meshing algorithm would

require more modifications. Furthermore, the algorithms N S e -

used to determine the support and the species boundaries ‘I’:f%nd x VE(x)- A(x) 6(f(x)).

depend to a large extent on the topology of the problem.

Their generalization to other types of systems is possible, but We partition theR" space in disjoint region@ such that

would require further work. With respect to the simulations,for each one of them we can choose a coordin&tewith

the only element that would require some efforts is theggnect to whicl (x) has only simple zeros. In other words,
evaluation of the characteristic function. Even if it can, in

; ; k P : "

principle, be generalized to any number of variables, its gen'—n each regan ' ’Zxk'f(x)qﬁo at each point wheré(x).

era”zation Wou|d require further Work_ =0. The funCtlonf(X) can then be taken out Of the Dirac

The theory presented here is not restricted to fixed pointsdelta function:

It can equally well be applied to other types of attractors 5 )

such as limit cycles. The algorithms presented here can eas- _ f Ny ©F(o). Ale X~ Xoj

ily be modified to consider such bivariate systems. Finally, v % de X VI00-AX) |&xkif(xé})|'

the theory could be generalized to study systems subjected to

multiplicative or asymmetric Markovian dichotomous noise. The sum ovek is carried out over the regior@* and the
one overj, over the simple zeros;' of f(x) with respect to

ACKNOWLEDGMENTS the coordinatex®' inside the regionQX. By integrating

) __within each regiom2 over the coordinate®!, we get
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v=>> f d""Ix VF(X)-A(X) —,
ik JoMig-0 |axkif(x0j)|

APPENDIX A: CHARACTERISTIC FUNCTION

GRADIENT where within each regiof2¥, the integral is carried out over
the n—1 coordinates excluding®, this last one being im-
plicitly given by the equatiorf (x) =0.

At an arbitrary pointx, on the boundary(Q,, the unit

vector N, perpendicular ta)(), and pointing outside of

Q, is given by

We consider the integral:
«yzf d"x V6,,(x)-A(X), (A1)
mn

where A(x) is an arbitrary vector function and,(x), the o
characteristic functiori2.9). Clearly,V 6,(x) is zero every- 3 o0 = Vi(Xo)
where except on the bounda#{ ,, whereaa(i) is discon- ’

© V)]
tinuous. Since the exact value 6f(x) on the boundary is
not important for the following argument, it can be approxi- e therefore get

mated by the functior’,(x):

~ | V(Xo)
A ) V==> fk B et NaQQ-A(X)%.
1 if xeQ,, x&dQ, Ik T 0% -0 Ixkif (Xo;)
0,(x)=13 if xedQ, In order to evaluate this integral, we need to parametrize the
0 otherwise. boundary using an appropriate set of coordinate systems.

With this in mind, we partition the boundag(}, into sub-

The discontinuity of the functiom’,(X) and the boundary's boundariesic,, for each of which am—1 dimensional co-
position can be described by ordinate system’' can be defined. The summation oyes
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now unnecessary, being implicitly implemented by the transwherep;(x,t) is defined as the probability that the system be
formation. The integral can be rewritten as in statex and that the noise be equal it at timet, and

X $f%0) | o) A'(t|x,iA ty), as the value of the dynamical variableat
T=—> f | kd”‘lx"Nm A _Ok_l_ kfl time t for a given realization initiated at timg, with the
kI Ja,na ‘ dwif(xo)| a(x"") system in statex and the noise equal toA. The operator

(A2) (---) represents an average over realizations, and the operator

PR . . (---), an average carried out at timever realizations and
’
where g, (x)/d(x") is the Jacobian of the transformation initial conditions.

i e H ki i . . L. . .
from then—1 coordinates ok excludingx* to the coordi- In the first equation, it is the probability density that
nate systenx’'. We define the quantitg(x''): evolves over time, while in the second one, it is the dynami-
cal variable's average. These two equations therefore corre-

- Vf(Xo) | dk(X) - spond, respectively, to the Scilinger and Heisenberg pic-
1y — rl QI ka A ’ '
9(x") W (xS = X edtl, (A3 tures. From Eq(B1), we obtain
dwif(xg)| a(x'"

and denote the summation and integration procedure in EA(x,kA)),= > f d"x(A"(to|X,i &, to))(e®);; pj(X,to)
(A2) by [ ;o d"~*x. We can now write 7o Jan

A R — n v D't /AT oA
P = _f d”‘lx"g(x")Nma-A(x"). (A4) ; m”d X pJ(tho)(e )J|<A (to|X"A:to)>:
. . ) . . . (B3)
In two-dimensional space, it is convenient to parametrize the R )
boundary by its length because in that cg¢e’')=1. where ™ is the propagator opj(x,t), that is the Schro
dinger propagator, anb', the operator adjoint t®.
APPENDIX B: HEISENBERG PROPAGATOR The initial probability densities being arbitrary, E¢B2)

] S and (B3) imply that 't is the propagator of the average
This calculation is inspired from one found [aQ]. Let (Ar(t|>2 iA to)):

A(x,kA) be a dynamical variable defined on the system’s ) . i
statex and the nois&kA, wherek=*. Its average at time (AT(t]x,t0))=eP (A (to]X,t0)),
t on a set of realizations and on the initial conditions can bewhere
calculated in two different but equivalent wayis<(=*):

Ar(t|)zv +A1t0)

AT (t]X,to) = N
(t}xto) AT(t]X, — A, to)

AGKIN=S [ XA (Ll )Ptk
(B1) It now appears clearly th@" is the evolution operator of the
average(A'(t|X,to)):
=2 f d™ pi(X,to)(A'(tIX,14,to)),
T Jan

d
(B2) -1 (A'(t]%.t0)) =DY(A'(t|X.to)).
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