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Kinetics of dichotomous noise-induced transitions in a multistable multivariate system

Steve Guillouzic and Ivan L’Heureux
Ottawa-Carleton Institute for Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

~Received 8 November 1996!

We study the stochastic evolution of a multivariate and deterministically multistable system subjected to an
additive Markovian dichotomous noise. To this end, a steady-state probability density support is defined in
such a way that no stochastic trajectory can escape. An appropriate boundary condition is then imposed in
order to numerically evaluate this distribution. When the noise amplitude is large enough, the system may
evolve from one deterministic attractor to another. A partition of the support in disjoint species is proposed. It
is then possible to study the kinetics of the noise-induced transitions between species. Projection operator
techniques are used to obtain a phenomenological kinetic law valid when the interspecies transition time scale
is much longer than all the other time scales characterizing the system. We also develop a fast algorithm
permitting the numerical evaluation of the phenomenological transition rate. As an example, we consider a
bivariate system exhibiting two deterministic stable fixed points and a saddle point. The results confirm the
existence of a phenomenological law insofar as the noise amplitude is large enough and its correlation time,
small enough.@S1063-651X~97!07004-9#

PACS number~s!: 02.50.Ey, 02.70.2c, 05.40.1j
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I. INTRODUCTION

In nature, nonlinear dissipative systems often exhibit
terministic multistability @1–7#, whereby many attractors
with their associated basins of attraction, coexist for a giv
set of control parameter values. Examples of such syst
include many electric oscillators, chemical and photoche
cal reactions, optical systems, and predator-prey relat
ships.

All these systems are generally subjected to noise, ra
environmental fluctuations, which are usually perceived
purely random. Their action is often believed to be stric
disorganizing. It is true that the stable states of a system
blurred by the noise. However, when the noise is applied
a nonlinear system, it can create stable states with no d
ministic counterpart@5,8#. As such, the noise may have
structuring effect. The influence of noise on nonlinear dis
pative systems must therefore be further investigated.

White noise is often used for such investigations beca
of its relative ease of use. But in the case where the corr
tion time of the noise cannot be neglected compared to
system time scales, colored noise must be considered.
two most common types of colored noise are the Ornst
Uhlenbeck noise and the Markovian dichotomous noise.
latter, having a discrete phase space, often leads to e
computational and experimental implementations. It is the
fore a valuable tool when the influence of the noise corre
tion time is not negligible.

Generally, a deterministic dissipative system posses
one or more attractors. To each of them corresponds a b
of attraction. If the system is initially located in one of them
it evolves inevitably toward the corresponding attract
When such a system is subjected to noise, a given trajec
in phase space may jump from one basin to another. Th
basins are not well defined anymore. As presented in Sec
new regions of phase space called species can be defin
analogy to chemical reactions. If the system realizatio
spend more time inside each of the species than to tr
551063-651X/97/55~5!/5060~13!/$10.00
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between them, a rate process between the different spe
can be defined@9#. Such transitions must not be confuse
with the noise-induced phase transitions described
Horsthemke and Lefever@5#. These noise-induced phas
transitions occur when the stationary probability density
qualitatively modified by a change of the parameters desc
ing the system or the noise. On the other hand, a rate pro
is defined for a given realization. It consists in the transiti
from one species to another, the parameters just mentio
being held constant.

The projection operator technique is often used in out-
equilibrium statistical mechanics@10#, for example, to study
chemical reactions@11#. In recent years, it has been esta
lished that projection operator techniques are very useful
studying the evolution of the probability density in a univa
ate bistable system subjected to noise@9,12–15# and for in-
vestigating the transition kinetics between species in s
systems, in particular for Markovian dichotomous nois
Thus, this method permitted the determination of the regi
in which a phenomenological rate law properly describes
transitions between species and of an approximate analy
expression for the corresponding transition rate@9#. The
memory effects that appear when a phenomenological
law is not valid have also been investigated using project
operator techniques@9,16#. These techniques have also be
used to study the critical slowing down of the interspec
transitions that occurs when the amplitude of the noise
close to the minimum value allowing those transitions to ta
place @9,17#. Furthermore, projection operator techniqu
have played a key role in the development of a numer
algorithm used to verify the validity of a phenomenologic
rate law and to calculate the transition rates in a univar
bistable system@17,18#. This algorithm is qualified as ‘‘di-
rect’’ since it only considers the realizations starting at
boundary between species. On the other hand, in a sim
phenomenological simulation, the realizations are initia
according to a given distribution and their evolution is mo
tored as a function of time. Since these transitions are v
5060 © 1997 The American Physical Society
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55 5061KINETICS OF DICHOTOMOUS NOISE-INDUCED . . .
uncommon in a regime where a phenomenological law
valid, a ‘‘direct’’ simulation is expected to be more efficie
than a simple phenomenological simulation.

However, few studies have investigated the interspe
noise-induced transitions in dissipative systems describe
more than one variable@19#. In this paper, we propose such
generalization of the direct simulation algorithm to mul
variate multistable systems. In order to do so, we num
cally determine the support over which the steady-state p
ability density is nonzero as well as the steady-st
probability density. We also need to establish an appropr
definition for the species.

In Sec. II, we derive the general analytical expressio
underlying the method. The next two sections present
numerical results for a simple example of a bivariate bista
system. Section III discusses the steady-state probab
densities while Sec. IV presents the transition rates in
regime where a phenomenological law is valid. Finally, co
cluding remarks are found in Sec. V. Two Appendixes co
plete the presentation.

II. FORMALISM

A. Steady-state probability densities

We consider a system described by ann-components vec-
tor xW whose evolution equation is

xẆ5FW ~xW !1 IW~ t !, ~2.1!

whereFW (xW ) is a pseudoforce andIW(t) is an additive symmet-
ric Markovian dichotomous noise sampled according to
Poisson distribution. It is characterized by@5,20–22#

IW~ t !P$2DW ,1DW %,

^ IW~ t !&50,

^ IW~ t !• IW~ t1t!&5uDW u2 exp~2gutu!,

whereg52/tcor, tcor being the noise correlation time,DW is
the noise amplitude, and̂•••& denotes an average over rea
izations.

Let p6(xW ,t)d
nx be the probability that the system be

statexW at time t with the noise being6DW . It can be shown
@5# that the evolution of the probability densitiesp6(xW ,t) is
given by

]p

]t
~xW ,t !5Dp~xW ,t !, ~2.2!

where

p~xW ,t !5Fp1~xW ,t !

p2~xW ,t !
G ,

D5F2¹W •@FW ~xW !1DW #2g/2
g/2

g/2

2¹W •@FW ~xW !2DW #2g/2G .
is

s
by

i-
b-
e
te

s
e
le
ity
e
-
-

a

We define the probability densityP(xW ,t,) projected onto the
dynamical variables and the differenceQ(xW ,t) between the
densitiesp6(xW ,t) as

P~xW ,t ![p1~xW ,t !1p2~xW ,t !,

Q~xW ,t ![p1~xW ,t !2p2~xW ,t !, ~2.3!

as well as the vector fields

JW~xW ,t ![FW ~xW !P~xW ,t !1DW Q~xW ,t !,

KW ~xW ,t ![FW ~xW !Q~xW ,t !1DW P~xW ,t !. ~2.4!

Equation~2.2! then becomes

]P

]t
~xW ,t !52¹W •JW~xW ,t !,

]Q

]t
~xW ,t !52¹W •KW ~xW ,t !2gQ~xW ,t !. ~2.5!

It is clear thatJW (xW ,t) represents the current density asso
ated with the probability densityP(xW ,t). Using Eqs.~2.1!
and ~2.3!, Eq. ~2.4! can be rewritten as

JW~xW ,t !5xẆ 1~xW !p1~xW ,t !1xẆ 2~xW !p2~xW ,t !,

KW ~xW ,t !5xẆ 1~xW !p1~xW ,t !2xẆ 2~xW !p2~xW ,t !.

It now appears thatJW (xW ,t) can also be interpreted as th
average velocity. On the other hand,KW (xW ,t) characterizes the
average spread of velocities in a set of realizations. As t
goes to infinity, these densities and vector fields approach
steady-state distributionsp6

s (xW ), Ps(xW ), Qs(xW ), JW s(xW ), and

KW s(xW ).
We consider a vector fieldFW (xW ) with two or more deter-

ministic attractors. To each of these corresponds a determ
istic basin of attraction. In general, the position of the attr
tors and the basins extent vary randomly in time un
stochastic dynamics. If the noise amplitude is large enoug
realization can therefore travel from one basin to anoth
thus allowing a rate process to be defined.

The steady-state probability density support~V! is a sub-
region of the phase space defined as the set of states re
able, directly or not, from any of the attractors. This defin
tion is reasonable since every realization will eventua
reach one of the attractors and subsequently all those re
able from it. The support boundary~]V! is composed of

segments belonging to lines defined byxẆ5FW (xW )6DW . There-
fore, everywhere on the boundary

N̂]V•@FW ~xW !1DW #50 and/or N̂]V•@FW ~xW !2DW #50,
~2.6!

whereN̂]V is a unit vector perpendicular to the boundary a
pointing outside the support.

Since the system cannot be outside the support once
steady state is reached,Ps(xW ) is zero outside it and
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N̂]V•JW
s~xW !50 ~2.7!

on its boundary. Equations~2.6! and ~2.7! also imply that

N̂]V•KW
s~xW !50.

The steady-state probability densities can be calcula
using the partial differential equations~2.5! and the boundary
condition ~2.7!:

¹W •JW s~xW !50,

¹W •KW s~xW !1gQs~xW !50,

N̂]V•JW
s~xW !50.

These equations cannot, in general, be solved analyticall
numerical method such as the finite elements techniqu
therefore required.

B. Kinetics and transition rates

OncePs(xW ) andQs(xW ) are known, the support~V! can be
split into m speciesa, to which correspondm disjoint re-
gionsVa , such thatJW s(xW ) has no component perpendicul
to the boundaries]Va of these regions:

N̂]Va
•JW s~xW !50, ~2.8!

where N̂]Va
is a unit vector perpendicular to the bounda

]Va and pointing outside of the regionVa . The points
where a vector perpendicular to the boundary cannot be
fined are the only ones where a probability current den
can exist between the regionsVa in the steady state. Th
species are therefore almost completely isolated from
another. This definition for the species is self-consisten
determined, i.e., it springs naturally from the system char
teristics instead of being arbitrarily imposed. Furthermore
leads to a simple rate law similar to the one found in
univariate case. Finally, as will be seen from the numer
results, it leads to ana posterioriseparation of time scales

A characteristic function is defined for each species:

ua~xW ![H 1 if xWPVa , xW¹]Va

1 if xWP]Vas
1
2 if xWP]Va i

0 otherwise,

~2.9!

where ]Va i is the interspecies boundary i.e., the part
]Va separatingVa from the other species, and]Vas , the
portion of ]Va on the support’s boundary excluding poin
belonging to]Va i . A species average population number
time t is given by

N̄a~ t ![(
i
E

R
n
dnx pi~xW ,t !ua~xW !

and its steady-state population by

ha[(
i
E

R
n
dnx pi

s~xW !ua~xW !,
d

A
is

e-
ty

e
y
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it
e
l

f

t

where i56. Since little probability current flows betwee
species once the steady state is reached, we expect the
age population number to vary slowly compared to the s
tem’s other degrees of freedom. We therefore define a lin
operatorP that projects onto the average population numb
in order to investigate their kinetics:

Pr i~xW ,t !

[(
a

F(
j
E

R
n
dnx8ua~xW8!r j~xW8,t !Gha

21ua~xW !pi
s~xW !,

~2.10!

wherer i(xW ,t) is a function defined on the system statexW and
the noiseiDW . We similarly define the complementary proje
tor Q[I2P, whereI is the identity operator.

InsertingP1Q5I in the evolution equation~2.2! and
projecting withP andQ, we get the coupled equations:

] tPp~xW ,t !5PD~P1Q!p~xW ,t !, ~2.11!

] tQp~xW ,t !5QD~P1Q!p~xW ,t !. ~2.12!

Integrating Eq.~2.12!, and inserting the result in Eq.~2.11!,
we get

]

]t
Pp~xW ,t !5PDPp~xW ,t !1PDeQDtQp~xW ,0!

1E
0

t

ds PDeQDsQDPp~xW ,t2s!. ~2.13!

Let tpop be the time scale associated to the populat
dynamics andtmic the next largest time scale in the syste
We assume a good separation of time scales (tpop@tmic). In
that case, the initial condition term in Eq.~2.13! decreases
rapidly. It can therefore be neglected fort@tmic . Alterna-
tively, it can be shown thatQp(xW ,0)50 if p(xW ,0) is propor-
tional to ps(xW ) separately in each region. Since whentpop
@tmic , p(xW ,t) approaches rapidly such a distribution, it
reasonable to neglect such a term.

SubstitutingP’s definition, integrating over an arbitrar
regionVb ~associated with the speciesb! and summing over
the noise, we get an equation describing explicitly the po
lation kinetics:

NG b~ t !5(
i j a

E
R
n
dnx ub~xW !PDi j pj

s~xW !ua~xW !ha
21N̄a~ t !

1E
0

t

ds (
i jkl a

E
R
n
dnx ub~xW !PDi j ~e

QDs! jk

3QDklpl
s~xW !ua~xW !ha

21N̄a~ t2s!. ~2.14!

Using the fact that(aua(xW )51 on all the support and als
Dps(xW )50, Eq. ~2.14! can be formulated in terms of th
deviations from the steady-state populationsdNa(t)
[N̄a(t)2ha :
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dṄb~ t !5(
i j a

E
R
n
dnx ub~xW !PDi j pj

s~xW !ua~xW !ha
21dNa~ t !

1E
0

t

ds (
i jkl a

E
R
n
dnx ub~xW !PDi j ~e

QDs! jk

3QDklpl
s~xW !ua~xW !ha

21dNa~ t2s!.

Since ( i*Rndnx ub(xW )Pr i(xW ,t)5( j*Rndnx8ub(xW8)r j

(xW8,t), we can eliminateP from the preceding equation. I
becomes

dṄb~ t !5dṄb8 ~ t !1dṄb9 ~ t !, ~2.15!

where

dṄb8 ~ t ![(
i j a

E
R
n
dnx ub~xW !Di j @pj

s~xW !ua~xW !#ha
21dNa~ t !,

dṄb9 ~ t ![E
0

t

ds (
i jkl a

E
R
n
dnx ub~xW !Di j @~e

QDs! jk

3QDklpl
s~xW !ua~xW !#ha

21dNa~ t2s!.

Again usingDps(xW )50, we get

dṄb8 ~ t !52(
a

ha
21dNa~ t !E

R
n
dnx ub~xW !JW s~xW !•¹W ua~xW !.

As shown in Appendix A, the characteristic function’s gr
dient corresponds to a Dirac delta function giving us
component of a vector perpendicular to the boundary.
such,

dṄb8 ~ t !5(
a

ha
21dNa~ t !E

]Va

dn21x g~xW !ub~xW !

3N̂]Va
•JW s~xW !,

where the procedure of integration and the functiong(xW ) are
defined in Appendix A. Since by definitionN̂]Va

•JW s(xW )50,

then dṄb8 (t)50. The instantaneous flux therefore plays
role in the population dynamics. Memory effects are the k
factor. Similarly, it can be shown thatPDklpl

s(xW )ua(xW )50.
We can therefore rewrite Eq.~2.15! as

dṄb~ t !52(
a

E
0

t

ds Mba~s!dNa~ t2s!, ~2.16!

where the memory function is defined as

Mba~ t ![2(
i jkl

E
R
n
dnx ub~xW !Di j ~e

QDs! jk

3Dklpl
s~xW !ua~xW !ha

21.

As long as the transients due to the initial state can be
glected, Eq.~2.16! is formally exact.

When there is a good separation of time scales (tpop
@tmic), we expect the phenomenological rate law
e
s

y

e-

dṄb~ t !52(
a

tba
21dNa~ t ! ~2.17!

to describe properly the population number kinetics. He
the coefficientstba

21 may be positive or negative and the
absolute values represent the phenomenological rate co
cients. In order for this to be the case,Mba(t) must approach
zero on a time scale on the order oftmic such thatdNa(t)
can be taken out of the time integral in Eq.~2.16!. In that
case the integrated memory function exhibits a plateau
havior for t@tmic . The transition ratetba

21 can be identified
with that plateau value:

tba
21[E

0

Dt

ds Mba~s!,

whereDt@tmic . If we consider times short compared to th
population dynamics time scale (Dt!tpop), the full propa-
gator (eDt) can be substituted for the projected one (eQDt).
This can be seen using the identity

eQDt5eDt2E
0

t

ds eD~ t2s!PDeQDs ~2.18!

and the estimate

E
0

t

ds eD~ t2s!PDeQDs;
t

tpop
eDt. ~2.19!

Indeed, in Eq.~2.19!, eD(t2s) can be approximated byeDt

and taken out of the integral fort!tpop since it operates only
on slowly varying degrees of freedom. The integral th
gives us a factort andPD, a factortpop21. The memory func-
tion can therefore be rewritten as

Mba~ t !5Mba~ t !F11OS t

tpop
D G ,

where

Mba~ t ![2(
i jkl

E
R
n
dnx ub~xW !Di j ~e

Ds! jk

3Dklpl
s~xW !ua~xW !ha

21.

Neglecting terms of orderDt/tpop, tba
21 can be expressed a

tba
21.Rba~Dt ![E

0

Dt

ds Mba~s!.

In full ( j56):

tba
215

ha
21

2 (
i j

E
R
n
dnx ub~xW !~eDDt! i j

3@JW s~xW !1 jKW s~xW !#•¹W ua~xW !,

where we have used the equationDps(xW )50. Defining the
operatorD†, adjoint toD,
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D†5F @FW ~xW !1DW #•¹W 2g/2
g/2

g/2

@FW ~xW !2DW #•¹W 2g/2G ,
this equation can be rewritten in the Heisenberg picture

tba
215

ha
21

2 (
i j

E
R
n
dnx@~eD

†Dt! j iub~xW !#

3@JW s~xW !1 jKW s~xW !#•¹W ua~xW !.

Since ¹W ua(xW ) corresponds to a Dirac delta function an
sinceN̂]Va

•JW s(xW )50,

tba
2152

ha
21

2 (
i j

E
]Va

dn21x g~xW ! j @~eD
†Dt! j iub~xW !#

3N̂]Va
•KW s~xW !,

where the integration procedure andg(xW ) are defined in Ap-
pendix A. As shown in Appendix B,@( i(e

D†t) j iub(xW )# rep-
resents the average over realizations at timet of the charac-
teristic function given that att50, the system was in stat
xW and the noise wasjDW . We defineub

r (tuxW , jDW ) as the value

ub„xW (t)… at time t for a given realization initiated at timet
50 with the system in statexW and noise equal tojDW . Thus:

^ub
r ~ tuxW , jDW !&5(

i
~eD

†t! j iub~xW !

where the average over the realizations is explicit. We n
obtain the central result of this paper:

tba
215

ha
21

2 E
]Va

dn21x g~xW !@^ub
r ~DtuxW ,2DW !&

2^ub
r ~DtuxW ,1DW !&#N̂]Va

•KW s~xW !, ~2.20!

wheretmic!Dt!tpop.
For univariate systems, this equation reduces to an e

tion derived by L’Heureux and Kapral@17# given that we
consider, like they did, only two species and use the lo
minimum of Ps(xW ) as the boundary between them. The c
terion N̂]V•JW

s(xW )50 cannot be used for that case sin
JW s(xW ) is identically zero.

In Eq. ~2.20!, the component ofKW s(xW ) perpendicular to
]Va represents the speed at which a set of realizations s
apart perpendicularly to the boundary. Also, the differen
between the averaged characteristic functions then repre
the evolution of the realizations after they have left t
boundary, indicating the fraction of realizations that end
in regionVb because they are going in the right directi
from the start. As in the univariate case, the presence or
absence of a plateau forRba(Dt) (tmic!Dt!tpop) consti-
tutes a validity criterion for the phenomenological rate la
~2.17!.

This law can be rewritten asdṄ(t)52KdN(t), where
the vectordN(t) groups together them population numbers
and the matrixK , the m2 transition coefficientstba

21. The
w

a-

al
-

its
e
nts

p

he

normalization condition(adNa(t)50 implies that onlym2

2m transition rates are independent and thatK is singular.
The eigenvalues and eigenvectors ofK give us some insight
into the population kinetics. The null eigenvalue correspon
to the steady state. The next smallest one, namedtpop

21, cor-
responds to the largest time scale of the system. A phen
enological simulation can be used to calculate it if it is mu
smaller than all other nonzero transition rates. For syste
with two species defined,A andB, we have

tpop
215tAA

211utAB
21u,

5tBB
211utBA

21u ~2.21!

III. STEADY-STATE DISTRIBUTION AND SPECIES

A. Model

In this study, we concentrate on bivariate systems. In
absence of noise, the system considered here exhibits
stable fixed points and a saddle point. When subjected
dichotomous noise, its evolution is given by

ẋ52ax31bx6Dx ,

ẏ52cy6Dy .

The amplitude of the noise is chosen in such a way that o
one attractor subsists for each of its values (6DW ). This bi-
variate system is described by two deterministically dec
pled subsystems, the one inx having been already studie
@9,17,18#. The only coupling between the two subsystems
due to the synchronized transitions of the noise. Once
merically evaluated, the probability densities for the biva
ate systems can therefore be projected onx andy and com-
pared with the known solutions of the univariate systems

Using reduced units

x5x*Ac/a,

y5y*Dy /c,

t5t* /c,

these equations can be rewritten as

ẋ*52~x* !31b* x*6Dx* ,

ẏ*52y*61, ~3.1!

where

b*5b/c

Dx*5DxAa/c3,

g*5g/c.

Subsequently, we drop the asterisk while implicitly using t
reduced units.
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B. Algorithms

1. Determination of the support

The first step leading to the evaluation of the interspec
transition rate consists in determining the support of
steady-state probability density. As mentioned in Sec. II, i
defined as the set of all the states reachable from the at
tors.

The support boundary is numerically evaluated as a
quence of segments, each of them being part of a trajec
leading toward an attractor. The computation of this
quence is a two-step process. The first one supplies an
proximation to the boundary and the second iteratively
proves it.

The chosen initial approximation consists of a clos
curve containing no area. It is determined by a determini
trajectory joining the two attractors. We use a starting po
located at the surviving attractor whenIW(t)51DW . The equa-

tion xẆ5FW (xW )2DW is then numerically integrated using an a
aptative Runge-Kutta algorithm in order to get a sequenc
points on a deterministic trajectory joining the two attracto
Using these points, a closed and degenerate loop encom
ing no area is built. This sequence of points constitutes
initial approximation of the support boundary. A differe
but equally valid approximation is obtained if the attrac
surviving whenIW(t)52DW is chosen as the starting point an

if the equationxẆ5FW (xW )1DW is numerically integrated.
As mentioned above, the second step consists of a

where the approximation is refined until sufficient precisi
is attained. It is important to note that the initial approxim
tion is a subset of the support as is every subsequent app
mation. We therefore iteratively extend the support until co
vergence is obtained. To do this, we consider successi
each of the points that define the segments approximating
support. For each point, we verify if there exists a determ

istic trajectory, described byxẆ5FW (xW )2DW or xẆ5FW (xW )1DW ,
going through it and leading outside the support as descr
by the current approximation. If this is the case, we num
cally integrate the corresponding equation until the determ
istic trajectory reaches the current support approximat
The latter is then updated to include the region just cal
lated. In doing so, we eliminate the part of the boundary t
is not on the support boundary anymore. We then continu
examine each point one at a time, but considering only th
that define the new approximation of the support bounda
When no deterministic trajectory lead outside of the supp
we consider that it has been entirely determined.

Even if it may seem complicated, this procedure is ve
efficient. Only a few minutes are required to determine
support for a given problem on an average workstati
However, the algorithm performance is tied to the order
which we use the trajectories that lead outside the sup
approximation. It is clearly advantageous to first use th
that increase the size of the approximation by the grea
amount since it minimizes the number of iterations.

2. Finite elements

The support being determined, the steady-state probab
density is then numerically evaluated using a finite eleme
s
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algorithm @23#. This method was chosen over the finite d
ference algorithm because of the relative ease with whic
considers boundaries of arbitrary shape. The finite elem
algorithm has been implemented using the Modulef libra
developed by the Institut National de Recherche en Inform
tique et en Automatique~France!.

We consider the following two partial differential equa
tions and the corresponding boundary condition:

¹W •JW s~xW !50, ~3.2!

¹W •KW s~xW !1gQs~xW !50, ~3.3!

N̂]V•JW
s~xW !50, ~3.4!

whereN̂]V is a unit vector normal to the boundary and poin
ing outside the support. As was seen in Sec. II, Eq.~3.4! also
implies

N̂]V•KW
s~xW !50. ~3.5!

As is well known, the finite elements method consists
using a mesh and interpolation functions to transform
partial differential equations to a system of linear equatio
The starting point of the finite elements method consists
multiplying Eqs. ~3.2! and ~3.3! by the arbitrary functions
HJ(xW ) andHK(xW ) and in integrating them over the suppor

E
V
d2x HJ~xW !¹W •JW s~xW !50,

E
V
d2x HK~xW !@¹W •KW s~xW !1gQs~xW !#50.

Using the divergence theorem and the boundary conditi
~3.4! and ~3.5!, we obtain the so-called weak formulation:

E
V
d2x¹W HJ~xW !•JW s~xW !50,

E
V
d2x@¹W HK~xW !•KW s~xW !2gHK~xW !Qs~xW !#50.

It implicitly contains the boundary conditions. They a
therefore natural boundary conditions and do not need to
forced when the linear system of equations is solved. T
last step in preparing the partial differential equations is
substitute the definitions ofJW s(xW ), KW s(xW ), andQs(xW ):

E
V
d2x„$¹W HJ~xW !•@FW ~xW !2DW #%p2

s ~xW !

1$¹W HJ~xW !•@FW ~xW !1DW #%p1
s ~xW !…50,

E
V
d2x„$2¹W HK~xW !•@FW ~xW !2DW #1gHK~xW !%p2

s ~xW !

1$¹W HK~xW !•@FW ~xW !1DW #2gHK~xW !%p1
s ~xW !…50.
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5066 55STEVE GUILLOUZIC AND IVAN L’HEUREUX
These equations are then solved forp6
s (xW ). Since the system

of linear equations is homogeneous, the solution is de
mined only up to a constant. The normalization condition

E
R
n
dnx P~xW ,t !51

determines that constant.
For this initial study, we chose to use the simplest p

sible type of finite elements, i.e., triangles with nodes at
vertices and to which are associated linear interpolation fu
tions. The solution therefore has a continuityC0 between
elements. We use the Galerkin method, which expresses
arbitrary functionsHJ(xW ) andHK(xW ) in terms of the same
interpolating functions as the steady-state probability de
ties.

3. Smoothing

The result obtained by the finite elements algorithm
hibits small amplitude oscillations superposed to the solu
of the partial differential equations. These are due to
discretization procedure. In principle, their amplitude can
made as small as necessary by decreasing the size o
elements. However, limited computer resources do not al
for an infinite reduction of the element size. The most i
portant region of phase space is the one between the p
since this is where the interspecies boundary is located.
probability density being small in that region, it was impo
sible to sufficiently decrease the amplitude of these osc
tions using the chosen type of finite elements.

It was therefore decided to use a smoothing procedur
order to reduce the amplitude of these undesirable osc
tions. The distributions are averaged separately on each
angle using the simple formula

Pin8 5Pjn8 5Pkn8 5
Pi1Pj1Pk

3
,

where the variablePm represents the initial value at glob
nodem andPmn8 , the average at global nodem calculated on
trianglen. The averages are considered to be performed

FIG. 1. Vectorial fieldFW (xW )1DW for g525, b5Dx51. The ar-
row length is proportional to the value of the vectorial field.
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multaneously on every triangle, i.e., the value at each nod
updated only once all the averages have been calculated

The last step consists in combining for each node
average value from each adjacent triangle. This in done
considering the areaAi of each triangle:

Pi95

(
j
Pi j8Aj

(
j
Aj

,

wherePi9 is the new value associated with global nodei . It is
easily verified that the normalization is conserved.

It may be necessary to apply the smoothing more th
once in order to obtain clear steady-state probability de
ties between the peaks for the purpose of defining a c
interspecies boundary.

4. Interspecies boundary

Once the steady-state probability densities have b
evaluated, the steady-state density currentJW s(xW ) can be com-
puted from Eq.~2.4! and the interspecies boundary dete

FIG. 2. lnPs(xW) for various values ofg obtained by finite ele-
ments techniques in the case whereb5Dx51. ~a! g55 ~two
smoothing cycles!; the spacing between level curves is 0.5~b! g
525 ~three smoothing cycles!; the spacing between level curves
1.0.
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55 5067KINETICS OF DICHOTOMOUS NOISE-INDUCED . . .
mined using criterion~2.8!. The first step is to start from a
point that is necessarily part of the boundary. For exam
the symmetry of the problem implies that the origin is part
the interspecies boundary for the model presented in S
III A. From this point, we find directions tangential to th
current, either upstream or downstream, and integrate al
way to the support boundary using an adaptative Run
Kutta algorithm.

C. Results

Figure 1 shows the stochastic fieldFW (xW )1DW on the sup-
port for the model presented in Sec. III A. The fieldFW (xW )
2DW can be obtained by a reflection through the origin. T
figure illustrates the validity of the result obtained from t
support determination algorithm. Since this procedure is
tirely deterministic, the support shape and size do not dep
on the value ofg. The presence of four vertices underlin
the complexity of the behavior that can arise when a sim
system is subjected to noise.

Figure 2 illustrates the steady-state probability dens
Ps(xW ) and demonstrates the variety of behaviors that
arise when a simple system is subjected to Markovian
chotomous noise. The symmetry propertyPs(xW )5Ps(2xW )
exhibited by the figure supports the validity of the alg
rithms. Forg small, the distribution in the neighborhood o
the origin is small and is overwhelmed by the numeri
noise. However near the edge of the support, its evaluatio
reliable. It is seen thatPs(xW ) exhibits an absolute maximum
near the upper-right and lower-left corners of the supp
There is also a relative maximum near the determini
stable fixed points (61,0). Ps(xW ) is therefore quadrimodal
As g increases, the maxima near the corners disappear,
ing a bimodal distribution. When the system is determinis
cally decoupled, a quantitative verification of the distributi
is to project it onx and y by integrating overy and x,
respectively. We can then compare the results with
known distributions for decoupled univariate systems~Fig.
3!. Indeed, it has been shown@5# that for a univariate system
whose evolution is described by

ẋ5F~x!1I ~ t !,

whereI (t) is Markovian dichotomous noise, the probabili
densityPs(x) is given by

Ps~x!5H Z

Deff~x!
exp@f~x!#, xP@xA ,xB#

0, x¹@xA ,xB#,

f~x!5E
d

x

dx8
F~x8!

Deff~x8!
,

~3.6!

Deff~x!5
D2

g S 12
F2~x!

D2 D .
The constantd is arbitrary whileZ is a normalization con-
stant. The interval@xA ,xB# constitutes the support, wher
xA,B are the roots ofF(x)56D, respectively.
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The probability current density is shown in Fig. 4. It
clearly seen that boundary condition~2.7! is verified. Finally,
an interspecies boundary passing through the origin can
defined according to criterion~2.8! ~Fig. 5!. Near the origin,
this boundary is close to the stable manifold of the determ
istic saddle point.

IV. KINETICS

A. Algorithms

1. Phenomenological simulation

In a simple phenomenological simulation, the realizatio
are initiated according to some distribution and are mo
tored under stochastic evolution. The results can then be
ted to a phenomenological rate law. However, for regim
where such a phenomenological law is valid, the stocha
trajectories wander for a long time within each species a
transitions seldom happen. Even if such a procedure ca
extremely inefficient, it is used here to verify the direct sim
lation results.

2. Direct simulation

A different approach is suggested by Eq.~2.20!, in which
all trajectories start on an interspecies boundary. Since
distributions are calculated using linear interpolation fun
tions, a simple trapezoidal algorithm is used to integrate o

FIG. 3. Projections ofPs(xW ) for g525, b5Dx51. The pro-
jected probability densities are practically indistinguishable fro
the ones calculated using Eq.~3.6!. ~a! Projection onx, ~b! projec-
tion on y.
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5068 55STEVE GUILLOUZIC AND IVAN L’HEUREUX
the species boundary. Such an approach is expected t
much more efficient than the simple phenomenological sim
lation. Furthermore, using a direct simulation leads to
determination of all the transition rates that are present
phenomenological rate law whatever the number of spe
may be. On the other hand, a simple phenomenolog
simulation can only distinguish between transition rates
different orders of magnitude.

FIG. 4. Probability current density field forg525, b5Dx51.

~a! JW s(xW )/uJW s(xW )u, ~b! ln(uJWs(xW)u); the spacing between the leve
curves is 1.0.

FIG. 5. Set of species defined forg525, b5Dx51.
be
-
e
a
es
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3. Characteristic function

For each type of simulation, the hardest task is to evalu
the characteristic functions, that is to determine if a giv
phase point is within a given species. A very general meth
that can be used to solve this problem is to count how m
times a ray originating from the position of the realization
phase space intersects the species boundary. The realiz
is inside the species, if and only if, there is an odd numbe
intersections. In two dimensions, the boundary is most s
ply implemented as a sequence of segments. Even if the
is arbitrary, the computations are much easier if it is para
to one of the axes. We chose a ray that points toward
positivex axis. The execution time of the algorithm scales
the number of segments describing the boundary. In orde
reduce the execution time, the species area is partitione
equidistant lines parallel to they axis. The computation is
then executed in two steps. First, we determine in wh
strip, described by a small number of segments, the rea
tion may be. Then, the algorithm described above is use
establish if it is there or not.

B. Results

In the caseb5Dx51 andg525, the existence of a pla
teau for the functionRAB(t) (tmic!t!tpop) supports the
validity of the phenomenological rate law~2.17! ~Fig. 6!. By
symmetry, tAA

215utAB
21u so that tpop

2152tAB
21 @Eq. ~2.21!#.

Since the lifetime of the transients is of ordertmic , we ob-
serve thattmic;1021 in this case. We also observe th
tpop;103. This further confirms the separation of time sca
and the validity of the phenomenological rate law for th
case. The same conclusion is obtained when the results
a simple phenomenological simulation are fitted to Eq.~2.17!
~Fig. 7!. Transition rates obtained using both types of sim
lation are compiled in Table I. In all cases,ha is numerically
evaluated as being close to 0.5, as required by the symm
of Eq. ~2.1! when considering model~3.1!.

We notice that the transition rates obtained using the
methods are of the same order of magnitude even tho
they differ by a factor of approximately 2. In particular, fo
the case whereb5Dx51 ~Fig. 8!, direct simulations give

tpop
2150.789 exp~20.273g!

FIG. 6. Integrated memory function as a function of time o
tained by direct simulation forg525, b5Dx51.
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55 5069KINETICS OF DICHOTOMOUS NOISE-INDUCED . . .
and simple phenomenological simulations,

tpop
2150.394 exp~20.277g!.

This result is encouraging considering the choice of fin
elements, i.e.,C0 linear interpolation functions forp6

s (xW ).

Since the vector fieldsJW s(xW ) andKW s(xW ) can be considered a
derivatives of these distributions, this approximation
somewhat crude. Using higher-order interpolation functio
providing C1 continuity between elements would improv
both the positioning of the interspecies boundary and
value of ¹W •KW s(xW ) in Eq. ~2.20!. The results of the direc
simulation could therefore be improved quite a bit by suc
modification. On the other hand, the results of the sim
phenomenological simulations would probably be about
same as long as the boundary stays well within the regio
low probability density separating the two peaks.

The results of the simple phenomenological simulatio
are very close to those obtained for the univariate systeẋ
52x31bx6Dx @17,18#. For this system, the interspecie
boundary is given by they axis. The probability in the region
enclosed between this boundary and the bivariate inter
cies one is small since the latter is located between the p
ability density peaks. Therefore, the two sets of species
not differ enough to be easily distinguishable using a sim
phenomenological simulation. It demonstrates that the ef
of the y variable is small in the present case.

V. CONCLUSION

The present study has investigated the usefulness of d
simulations to study multistable multivariate systems s

FIG. 7. Decay of theA-population number obtained by simp
phenomenological simulation forg525, b5Dx51.
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jected to Markovian dichotomous noise. In the case o
bistable bivariate system, the existence of a regime in wh
the phenomenological rate law~2.17! is valid has been dem
onstrated using both direct simulations and simple phen
enological simulations. In doing so, we established a spe
definition criterion.

Direct simulations are an effective way to evaluate int
species transition rates. However, they are very dependen
the positioning of the interspecies boundaries and on
value of the probability densities. Great care must theref
be taken in calculating them. In this respect, more wo
needs to be done to verify the validity of Eq.~2.20!, particu-
larly in using higher-order finite elements. These eleme
could also render useless the use of a smoothing proced

The speed of a simple phenomenological simulation
limited by the time required for a transition to occur. On t
other hand, a direct simulation execution speed is limited
the subtraction̂ ub

r (DtuxW ,2DW )&2^ub
r (DtuxW ,1DW )& found in

Eq. ~2.20!. As this difference decreases, the number
samples generated needs to increase in order to obtain s
cient precision. Even with this limitation, direct simulation
are a very powerful tool because of their capability of sim
taneously determining transition rates that are of the sa
order of magnitude in multispecies systems.

Even if the bivariate system studied here is determini
cally decoupled, the shape of the support is not trivial. F
thermore, the steady-state probability density shows a g
deal of diversity as the parameters are varied. This cle

FIG. 8. Phenomenological transition rates for the bivariate s
tem (b5Dx51). The continuous line corresponds to the dire
simulation calculation, whereas the dotted one describes the
nomenological simulation. The statistical uncertainty is smaller
equal to the extent of the points.
d
t

TABLE I. Transition rates for the bivariate system~3.1! (b5Dx51). The uncertainties are determine
using a linear regression to adjust the simulation results to Eqs.~2.17! and ~2.20! and thus only represen
statistical errors.

g hA tpop
21

Direct
simulation

Phenomenological
simulation

20 0.4997 ~3.47 60.02)31023 ~1.5560.06)31023

25 0.5001 ~8.44 60.02)31024 ~3.9 60.1)31024

30 0.5004 ~2.09760.004)31024 ~9.7 60.2)31025

35 0.5024 ~5.84 60.02)31025 ~2.4460.07)31025
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5070 55STEVE GUILLOUZIC AND IVAN L’HEUREUX
illustrates the rich behavior that can arise from an appare
simple system when it is subjected to noise.

This tool should prove very useful in studying stochas
systems. One such bivariate system is the quartic pote
coupled to the Morse oscillator@24#. This system is used in
model isomerization reactions coupled to an internal ro
tional degree of freedom. In this case, the noise could re
sent the stochastic variations of an external electric field
plied to the isomers. Furthermore, univariate inertial syste
could be studied using the same approach by introducin
second variable representing velocity.

Some of the algorithms implemented here could be u
to study systems described by more than two variables, w
others would need to be redesigned. For instance, the fi
elements and smoothing procedures could be genera
relatively straightforwardly to systems described by mo
variables. On the other hand, the meshing algorithm wo
require more modifications. Furthermore, the algorith
used to determine the support and the species bound
depend to a large extent on the topology of the proble
Their generalization to other types of systems is possible,
would require further work. With respect to the simulation
the only element that would require some efforts is
evaluation of the characteristic function. Even if it can,
principle, be generalized to any number of variables, its g
eralization would require further work.

The theory presented here is not restricted to fixed poi
It can equally well be applied to other types of attracto
such as limit cycles. The algorithms presented here can
ily be modified to consider such bivariate systems. Fina
the theory could be generalized to study systems subjecte
multiplicative or asymmetric Markovian dichotomous nois
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APPENDIX A: CHARACTERISTIC FUNCTION
GRADIENT

We consider the integralC:

C5E
R
n
dnx ¹W ua~xW !•AW ~xW !, ~A1!

whereAW (xW ) is an arbitrary vector function andua(xW ), the
characteristic function~2.9!. Clearly,¹W ua(xW ) is zero every-
where except on the boundary]Va , whereua(xW ) is discon-
tinuous. Since the exact value ofua(xW ) on the boundary is
not important for the following argument, it can be appro
mated by the functionua8 (xW ):

ua8 ~xW ![H 1 if xWPVa , xW¹]Va
1
2 if xWP]Va

0 otherwise.

The discontinuity of the functionua8 (xW ) and the boundary’s
position can be described by
ly
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ua8 ~xW !5H„f ~xW !…

whereH(x) is the Heaviside step function:

H~x![H 0 if x,0
1
2 if x50

1 if x.0

and f (xW ) is a continuous function such that

f ~xW !H .0 if xWPVa , xW¹]Va

50 if xWP]Va

,0 otherwise.

Equation~A1! can therefore be expressed as

C5E
R
n
dnx ¹W f ~xW !•AW ~xW !d„f ~xW !….

We partition theRn space in disjoint regionsVk such that
for each one of them we can choose a coordinatexki with
respect to whichf (xW ) has only simple zeros. In other word
in each regionVk, ]xki f (xW )Þ0 at each point wheref (xW )
50. The functionf (xW ) can then be taken out of the Dira
delta function:

C5(
jk

E
Vk
dnx ¹W f ~xW !•AW ~xW !

d~x2x0 j
ki !

u]xki f ~x0 j
ki !u

.

The sum overk is carried out over the regionsVk and the
one overj , over the simple zerosx0

ki of f (xW ) with respect to
the coordinatexki inside the regionVk. By integrating
within each regionVk over the coordinatexki, we get

C5(
jk

E
Vku f ~xW !50

dn21x ¹W f ~xW !•AW ~xW !
1

u]xki f ~x0 j
ki !u

,

where within each regionVk, the integral is carried out ove
the n21 coordinates excludingxki, this last one being im-
plicitly given by the equationf (xW )50.

At an arbitrary pointxW0 on the boundary]Va , the unit
vector N̂]Va

perpendicular to]Va and pointing outside of

Va is given by

N̂]Va
52

¹W f ~xW0!

u¹W f ~xW0!u
.

We therefore get

C52(
jk

E
Vku f ~xW !50

dn21x N̂]Va
•AW ~xW !U ¹W f ~xW0!

]xki f ~x0 j
ki !
U.

In order to evaluate this integral, we need to parametrize
boundary using an appropriate set of coordinate syste
With this in mind, we partition the boundary]Va into sub-
boundaries]Va

l for each of which ann21 dimensional co-

ordinate systemxW8 l can be defined. The summation overj is
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now unnecessary, being implicitly implemented by the tra
formation. The integral can be rewritten as

C52(
kl

E
]Va

l
ùVk

dn21x8 l N̂]Va
•AW ~xW8 l !U ¹W f ~xW0!

]xki f ~x0
ki!
U ]k~xW !

]~xW8 l !
,

~A2!

where ]k(xW )/](xW 8) is the Jacobian of the transformatio
from then21 coordinates ofxW excludingxki to the coordi-
nate systemxW8 l . We define the quantityg(xW8 l):

g~xW8 l !5U ¹W f ~xW0!

]xki f ~x0
ki!
U ]k~xW !

]~xW8 l !
, xW8 lP]Va

l ùVk, ~A3!

and denote the summation and integration procedure in
~A2! by *]Va

dn21x. We can now write

C52E
]Va

dn21x8 lg~xW8 l !N̂]Va
•AW ~xW8 l !. ~A4!

In two-dimensional space, it is convenient to parametrize
boundary by its length because in that caseg(xW8 l)51.

APPENDIX B: HEISENBERG PROPAGATOR

This calculation is inspired from one found in@10#. Let
A(xW ,kDW ) be a dynamical variable defined on the system
statexW and the noisekDW , wherek56. Its average at time
t on a set of realizations and on the initial conditions can
calculated in two different but equivalent ways (i56):

^A~xW ,kDW !‹t5(
i
E

R
n
dnx^Ar~ t0uxW ,iDW ,t0!&pi~xW ,t !

~B1!

5(
i
E

R
n
dnx pi~xW ,t0!^A

r~ tuxW ,iDW ,t0!‹,

~B2!
nd

e,
-

q.

e

s

e

wherepi(xW ,t) is defined as the probability that the system
in statexW and that the noise be equal toiDW at time t, and
Ar(tuxW ,iDW ,t0), as the value of the dynamical variableA at
time t for a given realization initiated at timet0 with the
system in statexW and the noise equal toiDW . The operator
^•••& represents an average over realizations, and the ope
^•••& t , an average carried out at timet over realizations and
initial conditions.

In the first equation, it is the probability density th
evolves over time, while in the second one, it is the dyna
cal variable’s average. These two equations therefore co
spond, respectively, to the Schro¨dinger and Heisenberg pic
tures. From Eq.~B1!, we obtain

^A~xW ,kDW !& t5(
i j

E
R
n
dnx^Ar~ t0uxW ,iDW ,t0!&~eDt! i j pj~xW ,t0!

5(
i j

E
R
n
dnx pj~xW ,t0!~e

D†t! j i ^A
r~ t0uxW ,iDW ,t0!&,

~B3!

where eDt is the propagator ofpi(xW ,t), that is the Schro¨-
dinger propagator, andD†, the operator adjoint toD.

The initial probability densities being arbitrary, Eqs.~B2!

and ~B3! imply that eD
†t is the propagator of the averag

^Ar(tuxW ,iDW ,t0)&:

^Ar~ tuxW ,t0!&5eD
†t^Ar~ t0uxW ,t0!&,

where

Ar~ tuxW ,t0!5FAr~ tuxW ,1D,t0!

Ar~ tuxW ,2D,t0!
G .

It now appears clearly thatD† is the evolution operator of the
averagê Ar(tuxW ,t0)&:

]

]t
^Ar~ tuxW ,t0!&5D†^Ar~ tuxW ,t0!&.
-

at.

o-

s.

.
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